International IOR Rectifier

30CTH03PbF

Hyperfast Rectifier

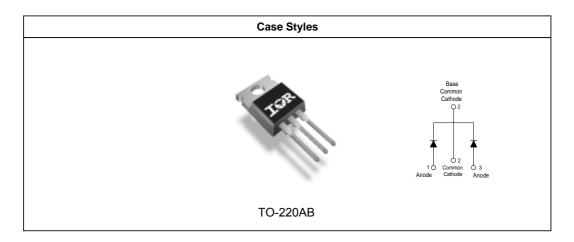
Features

- · Hyperfast Recovery Time
- Low Forward Voltage Drop
- · Low Leakage Current
- 175°C Operating Junction Temperature
 Lead-Free ("PbF" suffix)

t_{rr} = 36ns max. $I_{F(AV)} = 30Amp$ $V_{R} = 300V$

Description/ Applications

International Rectifier's 300V series are the state of the art Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop and Hyperfast recovery time.


The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC-DC converters as well as freewheeling diodes in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

Absolute Maximum Ratings

	Parameters		Max	Units
V _{RRM}	Peak Repetitive Reverse Voltage		300	V
I _{F(AV)}	Average Rectified Forward Current @ Tc = 153°C Per D	iode	15	Α
	Per De	vice	30	
I _{FSM}	Non Repetitive Peak Surge Current @ T _J = 25°C	150		
T _J , T _{STG}	Operating Junction and Storage Temperatures	- 65 to 175	°C	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V_{BR}, V_{r}	Breakdown Voltage, Blocking Voltage	300	-	-	V	I _R = 100μA
V _F	Forward Voltage	-	1.0	1.25	V	I _F = 15A, T _J = 25°C
		-	0.85	0.95	V	I _F = 15A, T _J = 125°C
I _R	Reverse Leakage Current	-	-	40	μA	V _R = V _R Rated
		-	8	200	μA	$T_J = 125$ °C, $V_R = V_R$ Rated
C _T	Junction Capacitance	-	38	-	pF	V _R = 300V
L _S	Series Inductance	-	8	-	nH	Measured lead to lead 5mm from package body

Dynamic Recovery Characteristics @ T_C = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Ť	Units	Test Condi	tions		
t _{rr}	Reverse Recovery Time	-	-	36	ns	I _F = 1A, di _F /dt	= 50A/µs, V _R = 30V		
		-	33	30		$I_F = 1A$, di_F/dt $T_J = 25^{\circ}C$:= 100A/μs, V _R = 30V		
		-	48	48 -		T _J = 125°C	450		
I_{RRM}	Peak Recovery Current	-	2.8	-	Α	T _J = 25°C	$I_F = 15A$ $di_F/dt = 200A/\mu s$		
Qrr	Reverse Recovery Charge	-	6.5 46	-	nC	$T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$	V _R = 200V		
	-	-	160	-		T _J = 125°C			

Thermal - Mechanical Characteristics

	Parameters		Min	Тур	Max	Units
TJ	Max. Junction Temperature Range		-	-	175	°C
T _{Stg}	Max. Storage Temperature Range		- 65	-	175	
R _{thJC}	Thermal Resistance, Junction to Case	Per Diode	-	-	1.4	°C/W
	Marking Device			30CTI	H03	

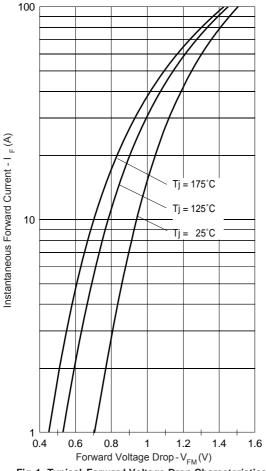
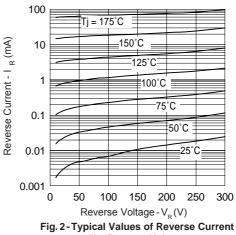



Fig. 1-Typical Forward Voltage Drop Characteristics

Vs. Reverse Voltage

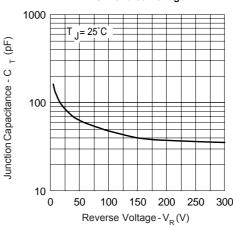


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

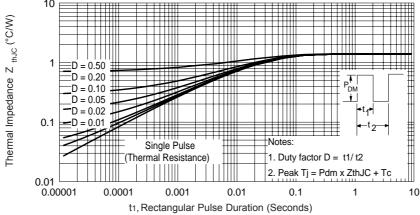


Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

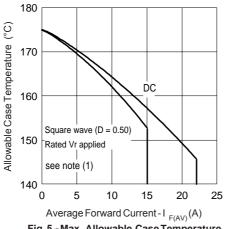


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

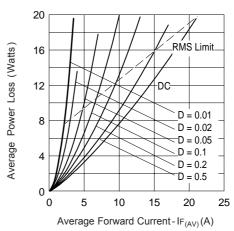


Fig. 6-Forward Power Loss Characteristics

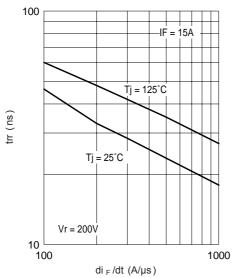


Fig. 7-Typical Reverse Recovery vs. di F/dt

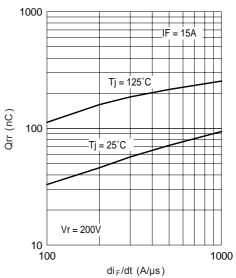


Fig. 8 - Typical Stored Charge vs. di _F/dt

$$\begin{split} & \textcircled{1} \quad \text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ & \textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \textbf{x} \, \textbf{V}_{\text{FM}} \textcircled{0} \, (\textbf{I}_{\text{F(AV)}} / \textbf{D}) \, \, \, (\text{see Fig. 6}); \\ & \textbf{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \, \textbf{x} \, \textbf{I}_{\text{R}} \, (\textbf{1-D)}; \, \textbf{I}_{\text{R}} \textcircled{0} \, \textbf{V}_{\text{R1}} = \text{rated V}_{\text{R}} \end{aligned}$$

Bulletin PD-20892 rev. A 10/06

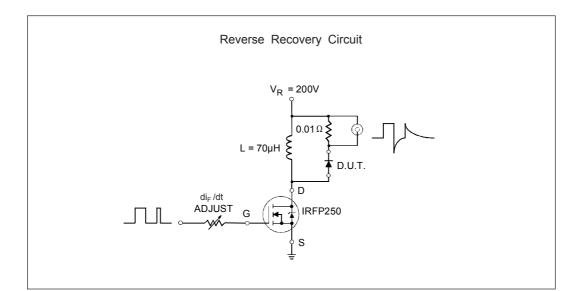


Fig. 9- Reverse Recovery Parameter Test Circuit

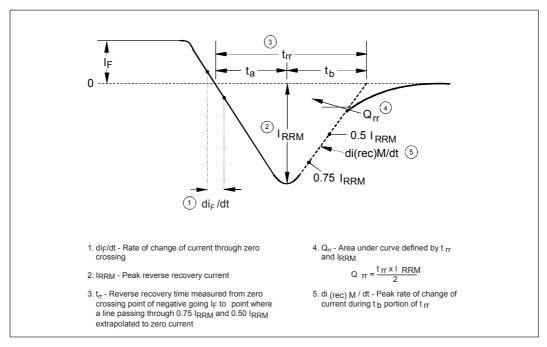
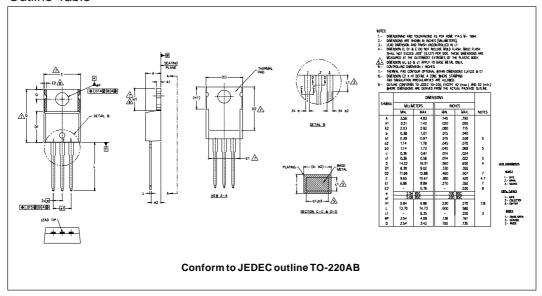
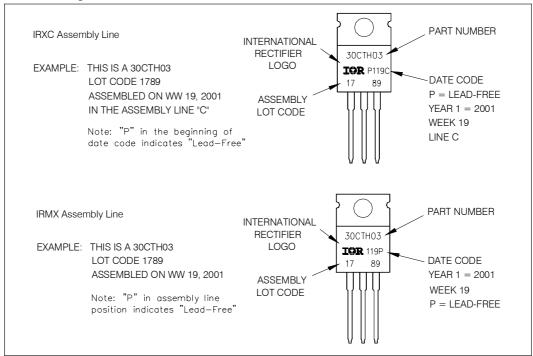
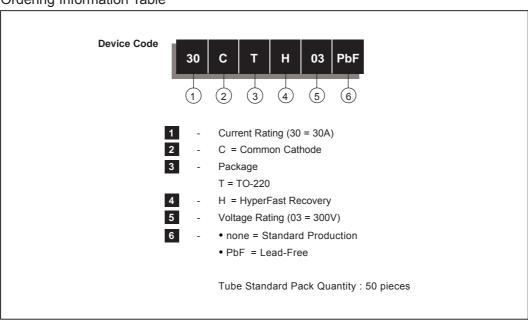




Fig. 10 - Reverse Recovery Waveform and Definitions


Outline Table

Part Marking Information

Ordering Information Table

Data and specifications subject to change without notice.
This product has been designed and qualified for AEC Q101 Level and Lead-Free.
Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 10/06